This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC and the Lawrence Berkeley National Laboratory contract XXX and the University of California Office of the President #### Who I am - I'm a 2nd year grad student at UCB, post-prelim, looking to start research - Working with Lee Bernstein in the Bay Area Nuclear Data Group funded by NA-22 and NSSC - The NSSC is a NNSA-funded \$25 million grant to Seven Universities Coordinating Coursework and Experience from Student to Scientist in a Partnership for Identifying and Preparing Educated Laboratory Integrated Nuclear Experts (SUCCESS PIPELINE) - I've worked on the development of the HFNG and most recently on measuring (n,n'γ) ### Why we care about $(n,n'\gamma)$ - Neutron transport and data for applications - \triangleright Extended-EGAF: partial (n,x γ_i) cross sections) - Nuclear Structure (ENSDF) - Low lying states - Statistical Models - Level densities, Radiative strength functions - Highly excited states # Deuteron Breakup n source at the 88-Inch cyclotron for $\sigma(n,n'\gamma)$ #### Iron spectrum - 1 hour of data, 2uA - natural iron: 92% Fe⁵⁶; 2% Fe⁵⁷ - Four clovers, up current to 20uA - 64 "clean" γ/s /barn /1%N_a/cm² Monoenergetic Beam: 10⁴⁻⁶ n/s/cm² #### Summary/What's Next - Inelastic scattering capabilities at cyclotron - I. Deuteron Breakup: 5MeV<E_n<60MeV</p> - II. 10¹² n/s/cm² in situ; 10⁷ n/s/cm² beam - High Flux Neutron Generator at UCB with multiple operation modes - I. Ion source based DD neutron source $E_n=2.45$ MeV - II. 108-10 n/s/cm2 uniform flux in situ; 104-6 n/s/cm2 beam - III. Moderation capabilities - IV. Rabbit system: shuttle time <1s - What's Next at Cyclotron - I. Chopper to improve nTOF measurements - II. 4 clover detectors (Clovershare) - III. Neutron energy spectrum using scintillators - IV. Indium and Zirconium foil activation for fast fluence ## <u>Collaborators</u> M.S. Basunia², T. Becker⁴, L. A. Bernstein^{1,3}, *J.A. Brown*¹, R.B. Firestone², A M. Hurst², J. James, W. Kable¹, J. Labrum¹, K.N. Leung¹, P. Renne⁴, B. Sleaford³, K. Thayer¹, K.A. Van Bibber¹, J. Vujic¹, *C. Waltz*¹ ¹ U.C.-Berkeley Dept. of Nuclear Engineering ² Lawrence Berkeley National Laboratory – Nuclear Science Division ³ Lawrence Livermore National Laboratory ⁴ Berkeley Geochronology Center